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INTRODUCTION

Students in the United States consistently underperform on state tests of mathe-

matical proficiency (e.g., Kim, Schneider, Engec, & Siskind, 2006; Pennsylvania 

Department of Education, 2011) and in international comparisons on the Trends 

in International Mathematics and Science Study (TIMSS; e.g., Mullis, Martin, 

Foy, & Arora, 2012) and Programme for International Student Assessment 

(PISA; e.g., Fleischman, Hopstock, Pelczar, & Shelley, 2010). Among other 

issues, aspects of early mathematics instruction can interfere with later learn-

ing (McNeil et al., 2006; see also McNeil et al., Chapter 8; Van Hoof et al., 

Chapter 5) and students are not adequately prepared to tackle difficult gate-

keepers, such as fractions (Booth & Newton, 2012) and algebra (Department 

of Education, 1997), that in turn prevent them from advancing in the fields 

of Science, Technology, Engineering, and Mathematics (STEM). To address 

these issues, educators and researchers have repeatedly called for mathematics 

instruction in the United States to be based on evidence (e.g., CCSSI, 2010; 

NCLB, 2002; NMAP, 2008).

Over the past few decades, the field of cognitive science has identified fac-

tors that have the potential to substantively improve students’ learning. These 

principles have been detailed in several reviews (e.g., Dunlosky, Rawson, 

Marsh, Nathan, & Willingham, 2013; Koedinger, Booth, & Klahr, 2013; Pashler 

et al., 2007), and many involve a comparison of different approaches (such as 

spaced vs. massed practice), showing that one type of instructional technique 
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is superior to another type of instructional technique (Koedinger et al., 2013). 

Many of these cognitive science principles are potentially useful for improving 

mathematics instruction, perhaps especially those concerning abstract and con-

crete representations, analogical comparison, feedback, error reflection, scaf-

folding, distributed practice, interleaved practice, and worked examples.

However, a vast divide persists between research and practice, as many 

of these principles are not consistently used in US classrooms. For example, 

mathematics textbooks in the UnitedStates frequently include decorative im-

ages alongside mathematically relevant images (Lehman, Schraw, McCrudden, 

& Hartley, 2007) and lack worked examples for students to study or explain 

(Mayer, Sims, & Tajika, 1995). Moreover, US teachers tend to shy away from 

talking about errors that could be useful for targeting students’ conceptual 

misunderstandings (Lannin, Townsend, & Barker, 2006). Many of the recom-

mended practices mimic those common in mathematics instruction in countries 

with traditionally higher mathematics achievement. For example, teachers in 

Hong Kong and Japan make more connections between abstract and concrete 

representations (Richland, Zur, & Holyoak, 2007), worked examples are more 

common in Japanese textbooks (Mayer et al., 1995), students are taught to use 

particularly effective concrete models in Singapore (Hoven & Garelick, 2007; 

see also Lee, Ng, & Bull, Chapter 9), and errors are considered to be critical 

 opportunities for learning in Japanese classrooms (Stigler & Hiebert, 1999).

The fact that these practices are prominent in countries that consistently 

outperform the United States suggests these practices may also be useful in US 

classrooms. However, before the wholesale implementation of these practices, 

it is important to first decompose them into the underlying cognitive principles 

and then test them within the US educational system. This is important because 

experiences outside of the classroom, prior instruction, and parental expecta-

tions may also differ across countries and in ways that might influence the ef-

fectiveness of instructional techniques in different contexts.

In the present chapter, we review the evidence for several principles that are 

especially promising for improving mathematics instruction (Table 13.1). Using 

the classification scheme proposed by Koedinger et al. (2013), we begin with 

principles that focus on improving memory and fluency: scaffolding, distributed 

practice, and feedback. We then move to worked examples, interleaved practice, 

and abstract and concrete representations, which primarily promote induction 

and refinement. Finally, we review principles that are geared towards improving 

sense making and understanding: Error reflection and analogical comparison. In 

each section, we first describe the principle and the instructional implications. 

We then evaluate the evidence for the effectiveness of the principle for promot-

ing mathematics learning, first from laboratory studies and then from classroom 

studies. Finally, we summarize what is and is not known about how these prin-

ciples relate to mathematics learning, and identify gaps to be addressed in fur-

ther translational research. The chapter concludes with an overall evaluation of 

the current state of evidence regarding how the use of these cognitive principles 
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can influence mathematics instruction, both for simple and for more complex 

skills and concepts; we also suggest research priorities necessary to maximize 

the potential impact of cognitive science for mathematics instruction.

SCAFFOLDING PRINCIPLE

Scaffolding derives from Vygotsky’s (1978) Zone of Proximal Development 

(ZPD), or the distance between the individual learner’s current development and 

their potential development if guided by parents, teachers, or peers, within socio-

cultural theory. With regard to learning, the theory suggests that adults play a 

role in children’s problem solving activities while taking into account the child’s 

level of understanding (Kupers, van Dijk, & van Geert, 2015). During the initial 

learning stages, adults offer large amounts of assistance and as the child becomes 

more competent, the adult removes assistance gradually. Under this assumption, 

learning begins as a social activity before it becomes an independent one. As 

an instructional strategy, scaffolding holds promise for promoting improved 

problem-solving performance (Kim & Hannafin, 2011). Broadly, scaffolding 

has been defined as any activity that involves modeling a specific behavior for a 

child or student, and then removing this modeling as the learner becomes more 

knowledgeable (Wood, Bruner, & Ross, 1976). More specifically, scaffolding in-

volves three components: (1) scaffolding should be contingent on students’ level 

TABLE 13.1 Cognitive Principles

Principle Basic description

Scaffolding Having instructional support gradually faded enables 
learners to solve problems fluently

Distributed practice Spacing out practice leads to better memorization than 
practicing all at once

Feedback Receiving feedback about responses improves achievement

Worked examples Studying (or explaining) worked out examples plus solving 
problems is better for refining knowledge than problem 
solving alone

Interleaving Practicing solving different types of problems in a mixed 
order is better for problem solving skill than practicing the 
same type of problems in a row.

Abstract and concrete 
representations

Linking between abstract and concrete representations yields 
increased learning and transfer

Error reflection Thinking about errors improves problem representation and 
increases conceptual understanding

Analogical 
comparison

Comparing and contrasting multiple instances leads to better 
understanding than studying one instance
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of understanding (Pratt & Savoy-Levine, 1998), (2) there should be a gradual 

withdrawal of scaffolding (Calder, 2015), and (3) there should be a responsi-

bility transfer from the teacher or adult to the student (van de Pol, Volman, & 

Beishuizen, 2010). Thus, not only should a teacher monitor the  students’ learn-

ing as they progress, but an initial assessment of the students’ knowledge level is 

necessary to adapt scaffolding strategies for effective learning.

Evidence from Laboratory Studies

With respect to mathematics learning, laboratory studies demonstrate that con-

sidering students’ prior knowledge about the content is a key component when 

determining how much or how little scaffolding is needed (Schwonke, Renkl, 

Salden, & Aleven, 2011; see also Thevenot, Chapter 3). Nevertheless, provid-

ing no scaffolding may be more effective than providing predetermined levels 

of scaffolding to all participants. In a metaanalysis comparing fixed scaffolds 

to those that were contingent on students’ ZPD, Belland, Walker, Olsen, and 

Leary (2015) found that predetermined, fixed amounts of scaffolding delays the 

transfer of responsibility process likely because it did not account for the learn-

ers’ current competence level and subsequently hampered the learning process.

Evidence from Classroom Studies

In mathematics classrooms, scaffolding has been shown to be necessary in early 

stages of learning particularly for students attempting to learn content just out-

side of their ZPD (Smit, van Eerde, & Bakker, 2013), but must be faded out 

successively in order to pass responsibility to the learner (Razzaq & Heffernan, 

2006; Vorhölter, Kaiser, & Ferri, 2014). When scaffolds are not removed over 

time, combined with not taking into account the students’ competence level, 

performance can suffer (Schwonke et al., 2011). As with laboratory work, the 

successful use of scaffolding in mathematics classrooms is based on individual-

ized instruction through computer adaptive learning or one-on-one strategies 

(e.g., Salden, Aleven, Renkl, & Schwonke, 2009), rather than a one size fits all 

scaffolding approach.

Recommendations for Further Research

A lack of consensus on the definition of scaffolding has made assessing the ef-

fectiveness of this approach difficult. For example, proponents of Wood et al.’s 

(1976) perspective define scaffolding as support from a teacher or more compe-

tent peer to help students solve problems that are beyond their capacity, whereas 

van de Pol et al. (2010) require that scaffolding adjusts to the students’ level 

of understanding, fading or successively removing scaffolds, and transferring 

responsibility from the teacher to the learner. Further, this definition has not 
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yet been broadened to include scaffolds used in intelligent tutoring systems. In 

these computer-based contexts, the computer uses students’ prior knowledge to 

determine the level of fading needed to adapt to the individual learner, making 

this activity less of a human-to-human interaction. As it stands, it is difficult to 

compare the effectiveness of this strategy across studies while also being aware 

that scaffolding does not look the same for every teacher-student interaction, 

and thus a general outline for what scaffolding is not may be an important part 

of reaching a consensus on what scaffolding includes (van de Pol et al., 2010).

Further, it seems clear that fading of support is necessary, but further work 

should investigate how and when it is best to fade for different mathematical 

content, not only by considering the learners’ prior knowledge, but other cog-

nitive characteristics (e.g., working memory, inhibitory control, and attention) 

that might improve or diminish learning if there are too few or too many scaf-

folds in place. Considering access to computer based learning, however, it may 

also be necessary to establish methods for providing faded support in traditional 

mathematics classrooms when personalized, computerized instruction is not in 

place, though this may not be feasible given the nature of scaffolds.

DISTRIBUTED PRACTICE EFFECT

Distributed practice is one of the most widely studied cognitive principles, 

whereby spreading out learning opportunities (spaced practice)—either within 

a single study session or across multiple sessions—leads to better long-term 

retention of studied material than does providing multiple learning opportuni-

ties one right after the other (massed practice) (Dunlosky et al., 2013). It is 

important to note that this principle does not refer to increasing the number of 

practice problems, but rather, the temporal distribution of those problems. As 

Rohrer (2009) clarifies,

For example, rather than work 10 problems on the same topic in one session, 

a student might divide the same 10 problems across two sessions separated by 

a week. Furthermore, spacing does not entail more recent practice, because in a 

well-designed spacing experiment, the interval between study and test, the test 

delay, is measured from the last practiced problem (Rohrer, 2009, p. 8).

Research on distributed practice has yielded two types of effects, spacing, 

and lag effects, with implications for the distribution of both study time and 

of practice testing. A spacing effect refers to an advantage of spaced-out prac-

tice over massed, or blocked, practice (see Cepeda, Pashler, Vul, Wixted, & 

Rohrer, 2006 for a review). A lag effect refers to advantages of spacing with 

longer lags (i.e., longer time between practice sessions) versus spacing with 

shorter lags (i.e., shorter time between practice sessions) (Carpenter, Pashler, 

& Cepeda, 2009). If stimuli are being processed intentionally, spacing ef-

fects are larger than when processing is unintentional (Janiszewski, Noel, & 
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Sawyer, 2003); however, these effects can also be observed under conditions of 

incidental learning when deep processing occurs (Challis, 1993).

Evidence from Laboratory Studies

Within the domain of mathematics, laboratory studies are sparse, but avail-

able results indicate there are also benefits for spaced practice on tasks that 

require more than rote memorization. For instance, spaced practice is supe-

rior to massed practice for understanding abstract mathematical concepts, such 

as determining simple permutations (Rohrer & Taylor, 2006, 2007). Longer 

lags were also shown to be superior to shorter lags for learning basic arithmetic 

facts (Rickard, Lau, & Pashler, 2008).

Evidence from Classroom Studies

Within mathematics classrooms, benefits of spaced practice have been observed 

for fluent retrieval of both addition (Schutte et al., 2015) and multiplication facts 

(Rea & Modigliani, 1985). Some classroom studies have focused on more com-

plex tasks, but have also often conflated testing of multiple cognitive principles. 

Thus, it is hard to isolate the benefit of spaced practice in mathematics for these 

more complex tasks. For example, Gay (1973) claimed to find greater benefit 

for spaced practice in algebra classrooms, but spacing was confounded with 

test delay in the study (Rohrer, 2009). A classroom study examining concep-

tual understanding in statistics, however, did confirm that longer lags between 

practice sessions were superior to shorter lags (Budé, Imbos, van de Wiel, & 

Berger, 2011)

Recommendations for Further Research

As noted by a number of researchers, there is a lack of studies exploring the 

effects of spacing of instruction or practice on mathematics learning. Spaced 

practice is not widely evident in mathematics instruction (Bahrick & Hall, 2005; 

Dempster, 1988; Mayfield & Chase, 2002; Rohrer, 2009; Willingham, 2002), 

and mathematics textbooks often promote blocked practice rather than spaced 

practice (Rohrer, 2009). Further study is needed to evaluate the effect of distrib-

uted practice on a variety of mathematics skills, especially those beyond rote 

fact memorization.

Another clear gap in the research is whether the effects of distributed prac-

tice vary with individual differences in learner characteristics. Several poten-

tial characteristics of interest have been suggested, including prior knowledge, 

and motivation (Dunlosky et al., 2013), and cognitive capacities (Delaney, 

Verkoeijen, & Spirgel, 2010). However, there have been no direct tests of 

whether the benefits of spacing and lag effects in mathematics learning are mod-

erated by these individual differences variables.



Evidence for Cognitive Science Principles  Chapter | 13    303

Delaney et al. (2010) suggest that researchers must examine whether other 

classroom activities may be effectively spaced to achieve the same goals. For 

example, classroom discussions may similarly serve to remind students of the 

content, and distributing discussion of those topics over time may be even 

more effective than distributing practice on those ideas over time (Delaney 

et al., 2010).

FEEDBACK PRINCIPLE

Generally, feedback is considered to be any form of information whose pur-

pose is to enlighten a recipient (Mory, 2004). The study of feedback—in the 

form of reinforcement—dates back to Skinner’s assertion that it reinforces 

behavior (Kulhavy, 1977), but feedback itself is considered to be “instruc-

tionally powerful” (Cohen, 1985, p. 33) for many contexts, not just behav-

ior. Within a learning context, feedback is typically given in response to an 

instructional question or task and is intended to improve the learners’ prob-

lem solving accuracy or conceptual understanding of the topic (Carter, 1984; 

Kulhavy, 1977). The effectiveness of feedback has been widely studied (see 

Shute, 2008 for a review), though not all students interpret teacher feedback 

in the same way (Williams, 1997). Recent research has focused specifically 

on the nature and timing of the feedback given, and how those factors impact 

its effectiveness.

Evidence from Laboratory Studies

For mathematics learning, one laboratory study showed that feedback helps 

to promote the formation of strategies used to solve arithmetic problems 

(Alibali, 1999). Further, process-oriented feedback (i.e., individualized com-

ments about a student’s confidence, strengths, and weaknesses) is more help-

ful than grade-oriented feedback (i.e., assigning a score, based on student 

performance compared to a reference group) for improving both mathematics 

achievement and interest in 9th grade students (Harks, Rakoczy, Hattie, Besser, 

& Klieme, 2014).

Students with low prior ability or knowledge may benefit more strongly 

from either outcome or strategy based feedback than their higher ability or 

more knowledgeable peers (Fyfe, Rittle-Johnson, & DeCaro, 2012; Krause, 

Stark, & Mandl, 2009; Luwel, Foustana, Papadatos, & Verschaffel, 2011). 

A student’s working memory capacity may also moderate the type of feed-

back that is most beneficial; for instance, outcome-based feedback may be 

more beneficial for students with a lower working memory capacity, as more 

complicated feedback may tax their already limited working memory re-

sources, while strategy and outcome-based feedback may be equally help-

ful for students with a higher working memory capacity (Fyfe, DeCaro, & 

Rittle-Johnson, 2015).
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Evidence from Classroom Studies

Classroom studies providing individualized feedback have confirmed that 

immediate feedback is better than delayed feedback (Kehrer, Kelly, & 

Heffernan, 2013; Singh et al., 2011) and that it can increase the development 

of expertise (Ellis, Klahr, & Siegler, 1993). Further, video feedback (e.g., an in-

dividual providing verbal explanation feedback while referring to a whiteboard 

illustration) may be even better than traditional textual feedback as it was found 

to slow down the pace of the learner, suggestively allowing more time for the 

student to internalize the concept (Ostrow & Heffernan, 2014).

Recommendations for Further Research

In classroom settings, information about the effectiveness of method of deliv-

ery and frequency of immediate, detailed, process-based feedback is limited. 

It remains to be determined how to best individualize feedback in classroom 

settings, and whether the types of feedback provided by computer assisted 

learning can be provided by teachers in classroom settings. In addition, more 

work is needed to test the effectiveness of the kinds of feedback that are typi-

cally given in the context of traditional classrooms that are not technology- 

based. Finally, more research is needed to assess the effects of negative 

feedback in terms of potential improvements in learning without  undermining 

motivation.

WORKED EXAMPLE PRINCIPLE

The worked example principle suggests that having learners study examples 

of worked-out solutions to problems is more effective for learning than hav-

ing them solve all of the problems themselves (Sweller & Cooper, 1985). 

Further learning benefits are found when the learners are asked to explain 

the examples (Renkl, Stark, Gruber, & Mandl, 1998; Hausmann & van 

Lehn, 2007). Several mechanisms have been invoked to explain this prin-

ciple. First, studying worked examples is thought to reduce learners’ cogni-

tive load by reducing the attentional and working memory demands needed 

to remember all of the problem solving steps (see also Lee, Ng, & Bull, 

Chapter 9). Instead, they can focus their limited working memory capac-

ity on understanding the reasoning behind the procedural steps taken in the 

example. Second, prompting learners to explain the steps in the example 

provides the additional benefits inherent to self-explanation, including mak-

ing knowledge explicit, connecting new information to prior knowledge, 

and generating inferences to fill knowledge gaps (Roy & Chi, 2005). Study-

ing and explaining worked examples may be most beneficial for novice 

than expert learners (Booth et al., 2015b; Kalyuga, Chandler, Tuovinen, & 

Sweller, 2001).
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Evidence from Laboratory Studies

The worked example principle has been successfully applied in a number of 

laboratory studies within the domain of mathematics. These studies demon-

strate that studying worked examples increases problem-solving performance 

or transfer for undergraduate students learning probability (, 1996, 1998) and 

business math (Hsiao, Hung, Lan, & Jeng, 2013), as well as high school stu-

dents learning algebra (Cooper & Sweller, 1987; Sweller & Cooper, 1985), 

and geometry (Tarmizi & Sweller, 1988). However, these benefits may only be 

attained when the worked examples do not require learners to split their atten-

tion between two separate sources of information (Tarmizi & Sweller, 1988; 

see also Rittle-Johnson, Star, & Durkin, Chapter 12). Learners may also ex-

perience a decrease in the amount of time it takes them to learn mathematical 

content (Zhu & Simon, 1987) or to solve problems on their own (Sweller & 

Cooper, 1985).

Evidence from Classroom Studies

Most studies of the worked examples effect that have taken place in the con-

text of real-world courses have relied on computer-assisted instruction. Studies 

conducted in computerized mathematics classrooms have revealed benefits in-

cluding a decrease in the amount of time it takes high school students to learn 

in geometry (Schwonke et al., 2007), an increase in procedural performance 

for 5th graders learning about equivalent fractions (Lee & Chen, 2015), and 

increased performance and improved attitudes for middle school students learn-

ing basic mathematical concepts via worked example-based podcasts (Kay & 

Edwards, 2012). Benefits for conceptual understanding have also been found for 

middle and high-school algebra students explaining worked examples in com-

puterized settings (Booth, Lange, Koedinger, & Newton, 2013; Reed, Corbett, 

Hoffman, Wagner, & MacLaren, 2013).

A growing number of worked examples studies have been conducted in 

more traditional classrooms. A study conducted in a high school algebra class-

room found that students who studied worked examples made fewer problem 

solving errors, took less time to learn, and required less assistance from their 

teacher (Carroll, 1994). Longer-term classroom studies have shown a time-on-

task benefit for Dutch 4th graders who studied worked examples while learn-

ing about subtraction (van Loon-Hillen, van Gog, & Brand-Gruwel, 2012) and 

benefits for conceptual and procedural performance as well as performance on 

standardized test items for middle and high school students who explained cor-

rect and incorrect examples while learning algebra (Booth et al., 2015a); how-

ever, benefits may be observed only for students with some prior knowledge 

who are not yet experts (Booth et al., 2015b). Finally, Retnowati, Ayres, and 

Sweller (2010) found that 7th graders improved their understanding of how to 

solve geometry problems after studying worked examples either individually 
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or in group work; however, metacognitive training including comprehension, 

connection, and reflection questions while solving problems may be even more 

effective than studying worked examples for middle school students working in 

groups (Mevarech & Kramarski, 2003).

Recommendations for Further Research

Recent studies have tested the effectiveness of worked examples in comput-

erized and real-world classrooms. While these studies typically demonstrate 

benefits of studying and explaining worked examples, there are published ex-

ceptions where the intervention does not work, or does not work for all students 

(e.g., Booth et al., 2015b). Research is needed to investigate the conditions un-

der which worked examples are beneficial in educational settings. For instance, 

does the benefit of worked examples vary based on the particular mathemati-

cal content to be learned? Is feedback necessary when students self-explain 

examples? To what degree does the formatting of the example matter? And what 

level of detailed translational work is necessary to ensure that worked examples 

will be beneficial in real-world classrooms?

Also, while it has been established that prior knowledge impacts learning 

from worked examples, all studies to date have examined general achievement or 

prior knowledge of the particular topic the students are learning about. However, 

might the type of prior knowledge that is important for learning vary with differ-

ent mathematical topics? For example, are there particular types of prerequisite 

knowledge or skills that might make students better prepared to learn a certain 

topic? If so, do students who lack that particular knowledge or skill benefit more 

from studying and explaining worked examples? Further investigation is needed 

to address these questions (see Rittle-Johnson, Star, & Durkin, Chapter 12).

INTERLEAVING PRINCIPLE

The interleaving principle suggests that when practice problems are alter-

nated, with a problem on one concept followed by a problem on another con-

cept, students learn better than if problems are blocked, or grouped by concept 

(Rohrer, 2012). Interleaving problem types is thought to be effective because it 

helps students to differentiate between problems of varying types and identify 

problem features that suggest different strategies for solution (Rohrer, 2012). It 

also may help students to build strong associations between problem types and 

appropriate solution strategies (Rohrer, Dedrick, & Burgess, 2014); in contrast, 

blocked practice allows students to solve problems by carrying out the same 

strategy on a group of problems without building such associations.

Evidence from Laboratory Studies

Mayfield and Chase (2002) are given credit for being the first to test the inter-

leaving effect for mathematics learning. In their study, college students were 
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given remediation on algebraic concepts, and those who received their prob-

lems in an interleaved format outscored the blocked group on application and 

problem-solving test items. However, the study confounded interleaving with 

spaced practice, as the interleaving group also had more space between practice 

problems of the same type. Subsequent work has investigated the effectiveness 

of interleaving independent of spacing. In two laboratory studies, college stu-

dents were given interleaved practice for solving volume problems with differ-

ent types of obscure solids and these students outscored students given blocked 

practice on the posttest (Rohrer & Taylor, 2007; LeBlanc & Simon, 2008). 

Taylor and Rohrer (2010) found that fourth grade students did not benefit im-

mediately from interleaved problems on prisms, but outperformed peers who 

had experienced blocked practice at the follow-up test; blocked students often 

made errors by using strategies that were appropriate for a different problem 

type than they had been taught. Finally, using the SimStudent, an intelligent 

agent that is able to learn from demonstration and problem-solving experi-

ences, Li, Cohen, and Koedinger (2012) found that interleaving allowed more 

opportunities for the simulated student to detect its errors and refine its knowl-

edge on several different mathematical content areas (fractions, addition, and 

equation solving).

Evidence from Classroom Studies

In the last few years, several studies have tested the effectiveness of interleaved 

practice in real world mathematics classrooms. Ostrow, Heffernan, Heffernan, 

and Peterson (2015) recently conducted a study to directly replicate Rohrer 

and Taylor’s (2007) results, but in a real-world instructional context. Using the 

ASSISTments system for homework assignments, Ostrow et al. (2015) found 

a positive interleaving effect for seventh grade students reviewing mathematics 

concepts, such as complementary and supplementary angles, surface area of 

pyramids, and probability of compound events. Rohrer, Dedrick, and Stershic 

(2015) also found that interleaving practice was more effective than blocked 

practice on immediate and delayed posttests, even when the blocked practice 

group was given an additional review period to control the delay between prac-

tice and tests.

Finally, other studies have replicated and extended laboratory findings in 

classroom settings, examining different features of problems that could be 

interleaved. For instance, one classroom study compared interleaving of task 

types with interleaving of the types of representations used to solve fraction 

problems; interleaving of task types was found to be more important than inter-

leaving representations for 5th and 6th grade students learning about fractions 

(Rau, Aleven, & Rummel, 2013). Though most interleaving is conducted with 

problems that have some commonalities, Rohrer et al. (2014) found that inter-

leaving problems was still effective even when problem types were completely 

dissimilar.
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Recommendations for Further Research

Both laboratory and classroom studies have shown that interleaving problem 

types is beneficial for students of different ages and for learning about a wide 

variety of mathematics concepts. The benefit may emerge immediately or at a 

delay, and may be robust regardless of the similarities and differences of the 

problems being interleaved (Rohrer et al., 2014); further studies must be con-

ducted to verify this robustness across varying mathematical topics.

In general, though results are positive, application of the interleaving effect 

to mathematics is relatively new and is being studied by only a few research 

groups. Perhaps because of this, classroom research is still relatively limited, 

and mathematics textbooks still support blocked rather than interleaved practice 

(Rohrer, 2012). Further research will thus clearly be required to make appre-

ciable differences in mathematical practice. Future work must also investigate 

how blocked and interleaved practice might be effectively combined to enhance 

student learning.

ABSTRACT AND CONCRETE REPRESENTATIONS PRINCIPLES

Do students benefit more from a concrete representation of a concept, such as 

a physical object or contextualized story, or an abstract representation of that 

concept, such as a symbol or an equation? Though some early studies pitted the 

two types of representations against one another, and reported benefits of one 

type over the other, a larger body of work finds that each type of representation 

has unique advantages and students learn most effectively by making connec-

tions between those representations (Pashler et al., 2007). Concrete representa-

tions are thought to ground new information with prior knowledge, and abstract 

representations help learners to transfer this new knowledge flexibly to other 

situations (see Belenky & Schalk, 2014, for a review). Beyond just linking the 

two types of representations, concreteness–fading (i.e., progressively present-

ing students with concrete representations that become increasingly abstract) 

may support efficient learning (Goldstone & Son, 2005).

Evidence from Laboratory Studies

Within the domain of mathematics, laboratory studies across a wide variety 

of age groups suggest that concrete representations support initial understand-

ing but may not lead to transfer (e.g., Kaminski, Sloutsky, & Heckler, 2005). 

In contrast, abstract representations can support transfer, but may not always 

promote conceptual understanding (De Bock, Deprez, Van Dooran, Roelens, 

& Verschaffel, 2011). Integrating concrete and abstract representations may 

provide synergistic benefits. For example, Uttal et al. (2013) found that for 

7-year-old learning 2-digit arithmetic, highlighting the connections between 

manipulatives and symbolic, written problem representations help children both 
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gain a sound conceptual understanding and transferable knowledge. Gestures 

can also be used to highlight similarities and differences between mathemat-

ics problems of different types (Richland & McDonough, 2010). In this study, 

students learned more about the relationship between permutation (e.g., the 

number of possible outcomes for gold and silver medals in a race with four run-

ners) and combination problems (e.g., the number of ways four students could 

win two show tickets) when the instructor left both types of problem on the 

board and gestured back and forth between the two problems when explaining 

the similarities (the same number of participants, two winners) and differences 

(order of winning matters in the race, but not in winning tickets to a show).

In general, starting with concrete or grounded representations and fading to 

more abstract or formal representations seem to lead to the best learning and 

transfer (Braithwaite & Goldstone, 2013; McNeil & Fyfe, 2012). However, con-

crete representations with features irrelevant to the concept or task can be harm-

ful; Uttal, Scudder, and DeLoache (1997) found that children have a hard time 

understanding that toy-like mathematics manipulatives could be both physical 

objects and representations of an abstract concept, and thus tended not to trans-

fer learning to formal representations. Similarly, undergraduates working with 

abstract representations (i.e., generic shapes) learned more than students given 

concrete representations that included seductive details (i.e., representations of 

measuring cups of liquid when the learning objective was mathematical group-

ing) (Kaminski, Sloutsky, & Heckler, 2008). Even discrete objects that are in-

dividually relevant to the task may fail to improve learning if their quantity is 

irrelevant to the task (Kaminski & Sloutsky, 2013). Abstract representations may 

be more beneficial than concrete representations when problems are particularly 

complex; as shown for both elementary school students (McNeil & Uttal, 2009) 

and undergraduates (Koedinger, Alibali, & Nathan, 2008). Similarly, learners 

with low prior knowledge may benefit more from concrete, well-grounded ma-

terials (Braithwaite & Goldstone, 2015; Petersen & McNeil, 2013), while both 

older and higher prior knowledge students may be able to benefit from more 

abstract materials (Booth & Koedinger, 2012).

Evidence from Classroom Studies

Classroom studies in mathematics are more abundant for this principle than 

those discussed thus far, and are consistent with the idea that making connec-

tions between abstract and concrete representations is helpful for a wide range 

of age groups (e.g., Ainsworth, Bibby, & Wood, 2002; Bottge, 1999; Stephan & 

Akyuz, 2012). Starting with more concrete representations and fading towards 

more abstract ones was also found to be beneficial for learning in elementary 

school mathematics classrooms (Fyfe, McNeil, & Borjas, 2015). Overall, the 

effectiveness of concrete and abstract representations may vary with learner 

characteristics including age and prior knowledge, which are often confounded. 

Siler and Willows (2014) found that 8th grade students benefited from abstract 
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representations, yet 6th grade students needed to see concrete representations in 

order to be successful with far transfer on the same problems. As they found that 

concrete representations were also beneficial for students with poor reasoning 

skills, it’s possible that some age-related findings may stem from knowledge or 

skill differences.

Recommendations for Further Research

Future research on this principle should include more comprehensive exami-

nation of which type, combination, and ordering of representations are most 

beneficial for different learning goals and different learners. We need more 

precise and consistent ways of evaluating representations, learning goals, and 

learner characteristics. Apparently discrepant results regarding the effective-

ness of interventions based on this principle could in fact be due to the opera-

tional definitions; for example, of concrete and abstract used in the studies, 

or the fact that prior knowledge affects whether a given representation is con-

crete or abstract for an individual learner. Prior knowledge and task familiarity 

may also underpin age- and grade-related trends that show differential benefits 

for concrete or abstract representations or from concreteness fading. Future 

research that operationalizes key factors related to the learner, the represen-

tations, the tasks, and learning goals, will yield more generalizable recom-

mendations that inform practice and will enable practitioners to select the best 

representations or sequence of representations for their students and classroom 

objectives.

ERROR REFLECTION PRINCIPLE

The error reflection principle grew out of research on cognitive dissonance 

theory, originally proposed by Festinger (1957) to explain a series of findings 

from experiments on self-justification. The original theory proposed that a natu-

ral  human motivation is to seek consistency amongst cognitions (i.e., thoughts, 

beliefs, or attitudes). Cognitive dissonance is thus a state of tension or discom-

fort that arises whenever one holds two cognitions that are inconsistent with 

one another (Festinger, 1957). While cognitive dissonance theory is often used 

to explain findings in social psychology on individuals’ attitude change sur-

rounding social topics (e.g., politics, stereotypes), one can see the great range 

of applicability of the theory to the study of cognitive change within learn-

ing environments. If experiencing cognitive dissonance can potentially moti-

vate an individual to alter their cognitions to make them more consistent, then 

it follows that purposefully creating cognitive disequilibrium can effectively 

produce changes in students’ thinking (Graesser, 2009). This idea can also be 

traced back to Piaget who argued that confronting discrepant ideas when in a 

state of disequilibrium is not only helpful but essential for knowledge growth 

(Piaget, 1980). Overoye and Storm (2015) review literature suggesting that 
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learning tasks are particularly beneficial when they induce uncertainty in stu-

dents and provoke them to attempt to resolve this uncertainty, such as presenting 

information contradictory to the learners’ current knowledge.

There are a number of methods that can induce cognitive dissonance, in-

cluding creating confusion (D’Mello & Graesser, 2014) and presenting students 

with discrepant events (Gorsky & Finegold, 1994). However, we focus here 

on a facet of cognitive dissonance that is particularly relevant to mathematics: 

reflection on errors—either one’s own errors (Cherepinsky, 2011) or those of 

other learners as presented in the form of incorrect worked examples (Große & 

Renkl, 2007). Ohlsson’s (1996) theory suggests that learning from errors can be 

particularly effective if learners are prompted to identify what features of the 

problem make the specific step taken incorrect, which can subsequently be used 

to correct faulty knowledge and fine-tune problem-solving. Studying errors is 

also thought to be beneficial because it provides exposure to multiple perspec-

tives rather than just one’s own perspective (Siegler & Chen, 2008).

Evidence from Laboratory Studies

One laboratory study within the domain of mathematics demonstrated that 

 explaining a combination of correct and incorrect examples was superior 

for  elementary students’ learning about mathematical equality, compared to 

 explaining correct examples alone (Siegler, 2002). However, Große and Renkl 

(2007) found that for undergraduate students learning about probability, those 

with lower prior knowledge were less able to benefit from incorrect examples, 

unless the segment of the solution that contained the error was highlighted.

Evidence from Classroom Studies

A growing number of classroom studies have demonstrated the effectiveness 

of reflecting on errors for mathematics learning. For instance, after being asked 

to correct errors in problems marked incorrect on their exams, undergradu-

ate calculus students felt they gained a better understanding of the material 

(Cherepinsky, 2011). Having middle school algebra students explain incor-

rect examples led to improvement in their ability to encode algebraic equa-

tions (Booth et al., 2013); explaining a combination of correct and incorrect 

 examples has also been shown to improve algebra students’ conceptual and pro-

cedural knowledge (Booth et al., 2015a). A series of studies on students learn-

ing about decimal magnitudes have also demonstrated benefits for comparing 

correct and incorrect worked examples (Durkin & Rittle-Johnson, 2012), using 

incorrect worked examples within the context of a computerized tutoring inter-

vention (Adams et al., 2014), and finding, explaining, and fixing errors within 

erroneous examples (McLaren, Adams, & Mayer, 2015); however, in each of 

these studies, benefits only emerged after a delay, not immediately after the 

activities.
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Though many studies show the benefits of studying errors, there is less con-

sensus on whether different groups of students experience differential benefits. 

For example, Heemsoth and Heinze (2014) found that students with high prior 

knowledge benefit more from identifying, explaining, and correcting errors than 

their less knowledgeable peers. In contrast, other studies have found that stu-

dents with low prior knowledge benefit the most from studying and explaining 

errors (Barbieri & Booth, 2016; Booth et al., 2015b). Still others demonstrate 

that incorrect examples were equally effective for all students regardless of 

prior knowledge (Adams et al., 2014; Durkin & Rittle-Johnson, 2012). Thus, 

the degree of benefit from reflecting on errors may vary based on the particu-

lar activities required of the student, individual differences in prior knowledge, 

or perhaps even the particular mathematics domain. Though not previously 

explored, individual differences in cognitive competencies, such as working 

memory may also influence the effectiveness of reflecting on errors.

Recommendations for Further Research

The next step is to begin investigating and comparing particular features within 

error reflection activities. For example, do learners need to find, explain, and 

correct errors to achieve maximum benefit or would studying them be suffi-

cient? Would comparing incorrect examples to correct ones be more effective 

than just studying and explaining incorrect examples alone? And does each of 

these types of error reflection activities have the potential to influence different 

types of knowledge or skills and at different time scales? Research must move 

from establishing the effectiveness of learning from errors in general to clarify 

how the two proposed mechanisms for benefits of error reflection map to par-

ticular task choices and resulting benefits for different groups of students.

ANALOGICAL COMPARISON PRINCIPLE

Analogical reasoning refers to the human ability to draw connections and no-

tice contrasts between the relationships of two or more representations (see 

also DeWolf et al., Chapter 7). In the process of comparison, learners have 

to map between two relationships of representations based on alignments (or 

misalignments), leading to generalizable knowledge (Gentner, 1983; Gick & 

Holyoak, 1980). For an analogy to work, mental representations must share 

a common relation, but need not appear similar. For instance, two equations 

may be presented in a similar form (e.g. “3 + 4 = ?” and “5 + 3 = ?”), or may 

be presented in a dissimilar form (e.g., “3 + 4= ?” and “Johnny had five apples 

and Mary gave him three more”), however, the arithmetical relation between the 

two equations needs to correspond. The effectiveness of learning from analo-

gies is known to vary with individual differences in executive function (EF); 

in particular, working memory and inhibitory control deficits make learning 

from comparisons difficult (Cho, Holyoak, & Cannon, 2007). Perhaps at least 
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in part because prior knowledge offloads EF demands (Grossnickle, Dumas, 

Alexander, & Baggetta, 2016), prior knowledge also impacts students’ ability to 

learn from comparisons (Gentner & Rattermann, 1991).

Evidence from Laboratory Studies

Within the domain of mathematics, laboratory research has confirmed that 

comparing multiple examples facilitates schema formation (see also Rittle-

Johnson, Star, & Durkin, Chapter 12). This has been found for a variety of 

mathematical content areas including algebra (Novick & Holyoak, 1991), prob-

ability (Ross, 1989), number sense (Thompson & Opfer, 2010), ratio (Novick 

& Holyoak, 1991), statistics (Cummins, 1992), and equivalence (Hattikudur & 

Alibali, 2010). Further, providing instructional supports, such as visual align-

ment or linking gestures have been shown to facilitate learning from compari-

sons (Richland & McDonough, 2010).

Evidence from Classroom Studies

Classroom studies testing the analogical comparison principle have frequently 

shown benefits for conceptual understanding in a variety of mathematical content 

areas, including algebra (Rittle-Johnson & Star, 2009), computational estima-

tion (Star & Rittle-Johnson, 2009), geometry (Guo & Pang, 2011), proportional 

reasoning (Begolli & Richland, 2016), numerical density (Vamvakoussi & 

Vosniadou, 2012), and division of natural and rational numbers (Richland & 

Hansen, 2013). For supporting conceptual understanding, Rittle-Johnson and 

Star (2009) found that comparing multiple solutions to a single problem was 

more beneficial than comparing multiple problem types using a single solution 

strategy, or comparing equivalent problem types with the same solution (Rittle-

Johnson, Star, & Durkin, Chapter 12). Benefits of analogical comparison have 

also been found for procedural fluency and flexibility (Begolli & Richland, 2016; 

Star & Rittle-Johnson, 2009). Several types of instructional supports have been 

shown to facilitate learning from comparing multiple representations, including 

visually aligning the to-be-compared examples (Star & Rittle-Johnson, 2009), 

using linking gestures to help students notice critical features (Alibali & 

Nathan, 2007), and prompting exploration (Schwartz & Bransford, 1998) or 

providing conceptual instruction (Fyfe, DeCaro, & Rittle-Johnson, 2014) prior 

to studying contrasting cases.

Individual differences in effectiveness have also been found, as students 

with greater prior knowledge become more likely to notice critical features 

of the to-be-compared items (Rittle-Johnson, Star, & Durkin, 2009; Star & 

Rittle-Johnson, 2009). However, novices have also been found to benefit from 

comparison (Guo & Pang, 2011; Rittle-Johnson, Star, & Durkin, 2012). In par-

ticular, while students with high prior knowledge may benefit more from com-

paring solution methods, students with low prior knowledge may benefit more 
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from sequential presentation or from comparing different problem types (Rittle-

Johnson et al., 2009).

Recommendations for Further Research

Orchestrating instruction around comparisons remains a challenge for math-

ematics teachers (Ball, 1993; Stein, Engle, Smith, & Hughes, 2008). Teachers 

in the United States regularly use comparisons in their lessons, but they do not 

always provide necessary instructional supports (e.g., visually aligning source 

and target, using gestures) compared to teachers in countries with higher achiev-

ing students, such as Hong Kong and Japan (Richland et al., 2007). US teachers 

often try to control the analogies and only engage students in procedural aspects 

of the analogy, not requiring them to attend to the structural alignments between 

representations in order to participate in instructional discussions (Richland, 

Holyoak, & Stigler, 2004). This may lead to failed opportunities for students 

to learn the deep aspects of concepts and transferable knowledge that are typi-

cally found in laboratory studies. Thus, more translational research is needed to 

find ways to help teachers utilize analogical comparisons in their classrooms by 

examining year-long curriculum implementations of both interactional teaching 

strategies and instructional materials. A recent attempt suggests that a single 

1-week professional development course seems to be insufficient for consistent 

uptake of instructional materials throughout a full curriculum, leading to small 

improvements in procedural knowledge (Star et al., 2015). Yet, these are impor-

tant first steps towards testing and making instructional materials widely avail-

able for scalable use. Future scale-up studies need to systematically examine 

teacher-led discussions around instructional comparisons.

CONCLUSIONS AND FUTURE DIRECTIONS

Each of the principles reviewed in this chapter has a clear relevance to math-

ematics instruction and the potential to improve student learning. However, the 

principles vary widely in terms of the quantity and quality of the empirical sup-

port for their effectiveness for mathematics learning. For example, distributed 

practice and interleaving effects have been established in other content areas 

but have seldom been tested in mathematics contexts. These principles clearly 

need more attention, with studies conducted either in laboratory or classroom 

settings, to determine if and when they are effective for students’ learning of 

different types of mathematical content. Other principles have been well-tested 

in laboratory studies, but need more investigations to determine when and how 

they are effective in real-world educational settings. For example, there is a 

growing body of evidence supporting error reflection, but less work detailing 

the benefits of different ways that errors can and should be used in the class-

room. For certain principles, such as scaffolding and feedback, it is vital to focus 

on implementation and testing in more traditional mathematics classes where 



Evidence for Cognitive Science Principles  Chapter | 13    315

teachers cannot rely on aid of individualized technology. Finally, the effective-

ness of many of the principles has been relatively well established in laboratory 

and classroom studies, including abstract/concrete representations, analogical 

comparison, and worked examples. Research on these principles needs to shift 

focus to understanding individual differences in the principle’s effectiveness for 

learning different types of mathematics content, as well as nuances of imple-

mentation in real-world classrooms.

The principles also vary in terms of their effectiveness for simpler versus 

more complex mathematical content. For instance, distributed practice has 

been repeatedly shown to be effective for improving simple mathematics skills, 

such as memorizing arithmetic facts. However, research has not yet established 

whether and how distributed practice can be implemented to effectively increase 

learning of more complex mathematical concepts and skills. The distinction 

and connections between abstract and concrete representations may also vary 

depending on whether simple or complex content is to be learned. In particular, 

learning of complex content may require the inclusion of abstract representa-

tions, where simple content can be learned from concrete representations as 

long as they do not contain seductive details, such as decorative graphics. Still 

other principles have been shown to be effective for both simple and complex 

mathematical skills. For example, worked examples have been shown to be 

effective for simple content, such as basic mathematics skills as well as more 

complex content like probability and algebra. Similarly, scaffolding has been 

shown to enhance early stages of learning of both simple and complex content; 

feedback, interleaving, analogical comparison, and error reflection also have 

benefits for learning regardless of the type of content.

Finally, these principles also vary in terms of how difficult it is to implement 

them in real classrooms, with and without technology. For instance, concrete 

and abstract representations are already often incorporated into mathematics 

textbooks, though further efforts could be made in selecting appropriate graph-

ics and determining how those components should be configured to minimize 

demands on cognitive load. Error reflection, analogical comparison, and inter-

leaved practice can be incorporated into lessons via either interactive activities or 

in static, paper-based materials; though worked examples have most frequently 

been used in computer-based classrooms, methods for implementing them with 

paper and pencil in traditional classrooms have also been successful. However, 

distributed practice, scaffolding, and feedback may be particularly difficult to 

implement and test systematically in the context of noncomputerized class-

rooms. What do these principles even look like in traditional classrooms, when 

they cannot be provided with individualized computer programs? Can they be 

incorporated into written materials, or must they be actively implemented by 

teachers?

Recent work in the National Center for Cognition and Mathematics Instruc-

tion undertook the translation of several of these principles to redesign a popu-

lar middle school mathematics curriculum, Connected Mathematics 2 (Lappan, 
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Fey, Fitzgerald, Friel, & Phillips, 2006). In this project, worked examples were 

carefully designed to enhance the different kinds of practice problems inher-

ent in the reform curriculum, and efforts were made to reduce graphics with 

seductive details and increase the mathematical relevance of all concrete rep-

resentations included in the text. However, the other two included principles—

distributed practice and feedback in terms of formative assessment—were trick-

ier to implement and required supplemental guidebooks for teachers. Effective 

practice distribution in this case, without the aid of technology, may require a 

thorough understanding of what skills are being practiced in each problem type, 

how frequently they are revisited in different formats, and how to help students 

make connections between previously learned skills and ones that are upcoming 

(Davenport, Lepori, Hauk, Viviani, & Schneider, 2012). In this type of transla-

tional work, it is critical to understand what the enacted principle would look 

like in a classroom, which is not necessarily as straightforward as it seems from 

laboratory studies.

General Recommendations

Translational work is essential to ensure that relevant findings from basic science 

reach their potential to improve our education system (Koedinger et al., 2013). 

Publishing findings of cognitive principles and speculating about their implica-

tions may move research forward, but it rarely yields appreciable change in 

real-world classrooms. Few practitioners have access to academic journals, thus 

they are not frequently exposed to new research findings. Further, even know-

ing that something works in laboratory studies does not mean it will necessarily 

work in the classroom. Examples can be found in and outside of mathematics 

of laboratory-tested techniques failing to translate in classrooms (Davenport, 

Klahr, & Koedinger, 2007; Dynarski et al., 2007) or helping only a portion of 

the students in the class (Booth et al., 2015b). As classrooms are much less 

controlled than university laboratories, the work of translating laboratory find-

ings to be applicable in the classroom requires intimate knowledge of both the 

principles and the education system, a willingness to develop lessons and ma-

terials iteratively, with many opportunities for revision as they are field-tested, 

and creative experimental design. Translational research may be best facilitated 

in collaboration with teachers and administrators from school districts to ensure 

that the development of materials and practices based on these principles yields 

classroom-ready products.

However, the best instruction is not one size fits all. Individual differences 

(e.g., prior knowledge, working memory capacity) may interact with the util-

ity of different strategies. Differentiated instruction is heavily promoted in 

today’s education system, and we need to be able to make good recommen-

dations to practitioners about what techniques to use, when, and for whom. 

Studies on individual differences in effectiveness of instruction have mainly 

explored prior knowledge and cognitive factors; future research should further 
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distinguish these factors and also investigate motivational characteristics that 

may impact whether a student benefits from a particular technique. We need 

to consider individual differences in demographic characteristics as well, 

especially given that factors like gender and race may influence the way in 

which instructional materials are viewed, interpreted, and accessed (Moreno 

& Flowerday, 2006). Continued investigation of individual differences is nec-

essary in order to maximize the benefits of research findings for real-world 

educational settings.
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